2,415 research outputs found

    Angular diameter distances reconsidered in the Newman and Penrose formalism

    Full text link
    Using the Newman and Penrose spin coefficient (NP) formalism, we provide a derivation of the Dyer-Roeder equation for the angular diameter distance in cosmological space-times. We show that the geodesic deviation equation written in NP formalism is precisely the Dyer-Roeder equation for a general Friedman-Robertson-Walker (FRW) space-time, and then we examine the angular diameter distance to redshift relation in the case that a flat FRW metric is perturbed by a gravitational potential. We examine the perturbation in the case that the gravitational potential exhibits the properties of a thin gravitational lens, demonstrating how the weak lensing shear and convergence act as source terms for the perturbed Dyer-Roeder equation.Comment: 21 pages, 6 figures, accepted to GR

    The uniqueness of the invariant polarisation-tensor field for spin-1 particles in storage rings

    Full text link
    We argue that the invariant tensor field introduced in [1] is unique under the condition that the invariant spin field is unique, and thereby complete that part of the discussion in that paper.Comment: 8 page

    Spacetime perspective of Schwarzschild lensing

    Full text link
    We propose a definition of an exact lens equation without reference to a background spacetime, and construct the exact lens equation explicitly in the case of Schwarzschild spacetime. For the Schwarzschild case, we give exact expressions for the angular-diameter distance to the sources as well as for the magnification factor and time of arrival of the images. We compare the exact lens equation with the standard lens equation, derived under the thin-lens-weak-field assumption (where the light rays are geodesics of the background with sharp bending in the lens plane, and the gravitational field is weak), and verify the fact that the standard weak-field thin-lens equation is inadequate at small impact parameter. We show that the second-order correction to the weak-field thin-lens equation is inaccurate as well. Finally, we compare the exact lens equation with the recently proposed strong-field thin-lens equation, obtained under the assumption of straight paths but without the small angle approximation, i.e., with allowed large bending angles. We show that the strong-field thin-lens equation is remarkably accurate, even for lightrays that take several turns around the lens before reaching the observer.Comment: 22 pages, 6 figures, to appear in Phys. Rev.

    Better Higgs-CP Tests Through Information Geometry

    Full text link
    Measuring the CP symmetry in the Higgs sector is one of the key tasks of the LHC and a crucial ingredient for precision studies, for example in the language of effective Lagrangians. We systematically analyze which LHC signatures offer dedicated CP measurements in the Higgs-gauge sector, and discuss the nature of the information they provide. Based on the Fisher information measure, we compare the maximal reach for CP-violating effects in weak boson fusion, associated ZH production, and Higgs decays into four leptons. We find a subtle balance between more theory-independent approaches and more powerful analysis channels, indicating that rigorous evidence for CP violation in the Higgs-gauge sector will likely require a multi-step process.Comment: 27 pages, 8 figure

    Five is 75: Student Success Perspectives, Status, & Highlights

    Get PDF
    Bridgewater State University\u27s incoming first-time, full-time freshmen cohorts have included about 1,500 students since 2007. A 5% gain in the overall graduation rate means helping 75 additional students achieve their goals. Many schools have achievement gaps between male and female students, but Bridgewater State University has typically had larger gaps than other institutions in its peer group. In recent years, Bridgewater has been particularly concerned about the graduation and retention rates for men of color. In data presented in this poster, we show that there is strong evidence that the overall performance of men of color has improved significantly, but that gender differences persist in general. Unlike students of color, there have been only very minimal closings in the achievement gaps for low income and first generation students

    Section 65.1-7 of the Virginia Workers\u27 Compensation Act: Do Recent Virginia Supreme Court Decisions Leave the Claimant in No-Man\u27s Land?

    Get PDF
    The Virginia Workers\u27 Compensation Act provides compensation for employees injured by accident or as a result of occupational disease. An employee who claims an injury by accident need not show negligence or fault on the employer\u27s part, but only that the injury was caused by an accident arising out of and in the course of the employment

    Slingshot non-sequential double ionization as a gate to anti-correlated two electron escape

    Get PDF
    At intensities below-the-recollision threshold, we show that re-collision-induced excitation with one electron escaping fast after re-collision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most important mechanisms of non-sequential double ionization, for strongly-driven He at 400 nm. Slingshot-NSDI is a general mechanism present for a wide range of low intensities and pulse durations. Anti-correlated two-electron escape is its striking hallmark. This mechanism offers an alternative explanation of anti-correlated two-electron escape obtained in previous studies.Comment: 6 pages, 3 figure

    Continuous image distortion by astrophysical thick lenses

    Full text link
    Image distortion due to weak gravitational lensing is examined using a non-perturbative method of integrating the geodesic deviation and optical scalar equations along the null geodesics connecting the observer to a distant source. The method we develop continuously changes the shape of the pencil of rays from the source to the observer with no reference to lens planes in astrophysically relevant scenarios. We compare the projected area and the ratio of semi-major to semi-minor axes of the observed elliptical image shape for circular sources from the continuous, thick-lens method with the commonly assumed thin-lens approximation. We find that for truncated singular isothermal sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens approximation is accurate to better than 1 part in 10^4 in predicting the image area and axes ratios. For asymmetric thick lenses consisting of two massive clusters separated along the line of sight in redshift up to \Delta z = 0.2, we find that modeling the image distortion as two clusters in a single lens plane does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR

    A high-gain Quantum free-electron laser: emergence & exponential gain

    Full text link
    We derive an effective Dicke model in momentum space to describe collective effects in the quantum regime of a free-electron laser (FEL). The resulting exponential gain from a single passage of electrons allows the operation of a Quantum FEL in the high-gain mode and avoids the experimental challenges of an X-ray FEL oscillator. Moreover, we study the intensity fluctuations of the emitted radiation which turn out to be super-Poissonian
    corecore